Flexible Coscheduling

2 1 1

Eitan Frachtenbergl’z, Dror Feitelson“, Fabrizio Petrini—, Juan Fernandez
lcess Modeling, Algorithms, and Informatics Group
Computer and Computational Sciences (CCS) Division

Los Alamos National Laboratory

{eitanf, fabrizio,juanf} @anl. gov

2 School of Computer Science and Engineering
Hebrew University, Jerusalem, Israel
feit@s.huji.ac.il

IPDPS 2003

Flexible Coscheduling — p.1/27

Outline

Parallel job scheduling

s Where we are
» Recent challenges and opportunities

Flexible Coscheduling — p.2/27

Outline

Parallel job scheduling

s Where we are
» Recent challenges and opportunities

#® Flexible coscheduling

s New job scheduling method
s Various kinds of applications and workloads

Flexible Coscheduling — p.2/27

Outline

Parallel job scheduling

s Where we are
» Recent challenges and opportunities

#® Flexible coscheduling

s New job scheduling method
s Various kinds of applications and workloads

® Performance

s Synthetic tests
» Real applications
» Dynamic workloads

Flexible Coscheduling — p.2/27

Parallel Job Scheduling - Space Slicing

Processors are divided to partitions
Various implementations (CM-5, SP2, Cray T3D, BG/L)

o
o
#® Each job runs to completion in its dedicated partition
o

Batch scheduling - no preemption

Flexible Coscheduling — p.3/27

Parallel Job Scheduling - Space Slicing

o o o 0

Processors are divided to partitions

Various implementations (CM-5, SP2, Cray T3D, BG/L)
Each job runs to completion in its dedicated partition
Batch scheduling - no preemption

Modes

Flexible Coscheduling — p.3/27

Parallel Job Scheduling - Time Slicing

> Multiprogramming in a parallel machine

> Improve utilization, response time, interactivity

Parallel Job Scheduling - Time Slicing

> Multiprogramming in a parallel machine

> Improve utilization, response time, interactivity

Challenges:

Scalability: machines and clusters are growing
Overhead, cache, and memory pressure
Flexibility: various jobs and workloads:

» Cooperating processes need to be scheduled
together

o Load imbalance

Flexible Coscheduling — p.4/27

Explicit Coscheduling

#® Gang Scheduling (GS): coordinated context switching
Context switch incurs overhead and cache pressure
Scalablility issues with global context switch

Flexible Coscheduling — p.5/27

Explicit Coscheduling

#® Gang Scheduling (GS): coordinated context switching
Context switch incurs overhead and cache pressure

Scalability issues with global context switch

Nodes

Flexible Coscheduling — p.5/27

© o o o

Implicit Coscheduling

Various methods: DCS, SB, PBT, ICS,...
Use only local information for coordination
Good for load-imbalance and utilization
So-so for fine-grained or rate-equivalent jobs

Flexible Coscheduling — p.6/27

o o o ©

Implicit Coscheduling

Various methods: DCS, SB, PBT, ICS,...
Use only local information for coordination
Good for load-imbalance and utilization
So-so for fine-grained or rate-equivalent jobs

MNodes

Flexible Coscheduling — p.6/27

Time-Slicing Scheduling

SB [Dusseaul]
DCS,[SDbaIvarmBB] BCS [Fetrinilo] GS:.[DustethutBE]
-« — >
less coordination maore

v Load-imbalance
v Simplicity
x Fine-grained

x Rate-equivalence

v Fine-Grained
v Fair
x Scalability

x Overhead

Flexible Coscheduling — p.7/27

Time-Slicing Scheduling

S_B'[Dusseaum]

DCS[SDbaIvarmBB] BCS [Petrini00] GS:[DustethutBE]
- — >
less coordination more

v Load-imbalance v Fine-Grained

v Simplicity v Fair

x Fine-grained x Scalability

x Rate-equivalence x Qverhead

Flexible Coscheduling — p.8/27

© o o o

Flexible Coscheduling (FCS)

Use global coordination with local information
Monitor processes’ communication activity

Classify processes based on communication
Schedule processes according to their needs

Flexible Coscheduling — p.9/27

FCS Decision Tree

Granularity

Flexible Coscheduling — p.10/27

FCS Phase Diagram

-

DCthresh

high

DC
= J |:thresh
CSthresh
CS
: .

low high

low

communication waiting time T

computation granularity T cpu

Flexible Coscheduling — p.11/27

FCS Scheduling

Use regular time-slices, but schedule processes based on
classification:

#® Fine-grained (CS) use explicit coscheduling

#® Coarse-grained (DC) use no coordination
s Local UNIX scheduler

Load-imbalanced (F) use implicit coscheduling
s Prioritized Spin-Block

Flexible Coscheduling — p.12/27

Efficient Job Scheduling with STORM

FCS fully implemented with STORM - Scalable Tool for
Resource Management

Lightweight mechanisms, using HW collective
communication primitives

Extremely scalable - “local” context-switch and job
launching costs on thousand of nodes

Set of layered, modular deemons (per node and per
machine)

“Pluggable” scheduling algorithms: Batch, Backfilling,
Gang-Scheduling, Spin-block, Local, FCS, BCS

Flexible Coscheduling — p.13/27

Performance Evaluation

1. Verification tests - synthetic applications based on BSP
model

2. Static workloads with real applications
3. Dynamic workloads

FCS compared to GS, SB, FCFS, and Local

Run on the 'Crescendo’ cluster:

#® 32 Dual Pentium-Ill 1-GHz, 1-GB RAM
#® Quadrics Elan3 NICs and switch

Flexible Coscheduling — p.14/27

Fine-Grained Jobs

> Two fine-grained jobs run concurrently on same nodes
>Each job computes & communicates every 5ms (60s total)
>2 nodes, 4 processors

4 processes
- =

job 0

run time
per iteration
_

job 1

Flexible Coscheduling — p.15/27

Fine-Grained Jobs - Turnaround Time

Algorithm | Job O | Job 1 | Total
FCFS | 60.00 | 120.0 | 120.0
Local 234.8 | 231.0 | 234.8

GS 118.1 | 118.1
SB 125.4 | 125.4 | 125.4
FCS 118.3 | 118.4 | 118.4

Flexible Coscheduling — p.16/27

_oad-Imbalanced Jobs

>Same two jobs, but with load-imbalance
> Half the processes compute twice as much
>Complementing halves create opportunity for packing

4 processes
- =

job O

run time
per iteration

job 1

Flexible Coscheduling — p.17/27

Imbalanced Jobs - Turnaround Time

Algorithm | Job O | Job 1 | Total
FCFS | 116.6 | 233.6 | 233.6
Local 301.8 | 300.8 | 301.8

GS 231.3 | 231.9 | 231.9
SB 177.9 | 179.5 | 179.5
FCS 176.3 | 177.6

Flexible Coscheduling — p.18/27

Complementing Jobs

> Four jobs, one with load-imbalance
> Half the processes compute four times as much
> Complementing parts create opportunity for packing

4 processes

- job O :
Sl ;
e 5 job 1
= i
5 job 2
o .
job 3

Flexible Coscheduling — p.19/27

Complementing Jobs - Turnaround Time

Algorithm | Job 0 | Job 1 | Job 2 | Job 3 | Total
FCFS 231.3 | 290.2 | 349.8 | 408.6 | 408.8
Local 356.1 | 233.1 | 233.6 | 233.7 | 356.1

GS 404.7 | 232.1 | 232.2 | 232.2 | 404.7
SB 261.2 | 229.2 | 229.2 | 229.2 | 261.2
FCS 236.3 | 233.4 | 233.5 | 232.0

Flexible Coscheduling — p.20/27

© o o @

SWEEP3D Performance

Particle transport code from the ASCI workload
Balanced, fine-grained BSP application

In this test: run time of ~ 48s with 3.5ms granularity
Four concurrent copies on entire cluster (64 PES)

Flexible Coscheduling — p.21/27

© o o @

SWEEP3D Performance

Particle transport code from the ASCI workload
Balanced, fine-grained BSP application

In this test: run time of ~ 48s with 3.5ms granularity

Four concurrent copies on entire cluster (64 PES)

Algorithm | Total
FCFS
GS 194.6
SB 208.5
FCS 197.5

Flexible Coscheduling — p.21/27

© o o o

SAGE Performance

Grid Eulerian hydro code from the ASCI workload
Imbalanced, variable granularity
Three concurrent copies, different input parameters

Dedicated run times of about 39s, 86s, and 95s (=~ 220s
total)

Flexible Coscheduling — p.22/27

© o o o

SAGE Performance

Grid Eulerian hydro code from the ASCI workload

Imbalanced, variable granularity

Three concurrent copies, different input parameters
Dedicated run times of about 39s, 86s, and 95s (=~ 220s

total)
Algorithm | Job 0 | Job 1 | Job 2 | Total
FCFS 39.2 | 125.4 | 220.2 | 220.2
GS 120.4 | 222.0 | 227.0 | 227.0
SB 124.2 | 190.0 | 200.5
FCS 112.9 | 195.0 | 205.8 | 205.8

Flexible Coscheduling — p.22/27

o o

°

Dynamic Workload

1000 jobs with dynamic job arrivals, sizes and runtimes
Based on detailed model [LublinO1]

Synthetic test application with different granularities
from 5ms to 500ms

Modify offered load by factoring run times
Multiprogramming level of 6
Tiimeslice of 50ms

Flexible Coscheduling — p.23/27

Dynamic Workload - Response Time

Response time (sec)
D
o

— """'"""'-."'-'-'-r--‘-r--'n'ﬂ‘..'..'..'.r..-..-..-.r..-.r.r.,-.,-,,‘,-,.,,a,,,;,;;,:;‘j:, S
0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
Offered load

Flexible Coscheduling — p.24/27

Conclusions

#® FCS designed to combine the best of both worlds:
explicit and implicit coscheduling.

Monitor processes and schedule according to needs.

Competitive with batch, local, gang, and implicit
scheduling methods in varied scenarios

Improved job packing and handling of load-imbalance
lead to lower loads and better response times.

For more information:
http://www.cs.hujr.ac.i1l/ etcs
email: etcs@cs.huji.ac.ll

Flexible Coscheduling — p.25/27

Parameter Space

Turnaround time (sec)

100
90
80
70
60
50

1

0.75

0.004 0. ,
0.016 025 5\/arlance

.067
' 256
Granularity (sec) 0.25 10540

Flexible Coscheduling — p.26/27

STORM Demo at SC’02

Flexible Coscheduling — p.27/27

	Outline
	Parallel Job Scheduling - Space Slicing
	Parallel Job Scheduling - Time Slicing
	Explicit Coscheduling
	Implicit Coscheduling
	Time-Slicing Scheduling
	Time-Slicing Scheduling
	Flexible Coscheduling (FCS)
	FCS Decision Tree
	FCS Phase Diagram
	FCS Scheduling
	Efficient Job Scheduling with STORM
	Performance Evaluation
	Fine-Grained Jobs
	Fine-Grained Jobs - Turnaround Time
	Load-Imbalanced Jobs
	Imbalanced Jobs - Turnaround Time
	Complementing Jobs
	Complementing Jobs - Turnaround Time
	SWEEP3D Performance
	SAGE Performance
	Dynamic Workload
	Dynamic Workload - Response Time
	Conclusions
	Parameter Space
	STORM Demo at SC'02

